Microbiologically Induced Calcite Precipitation Mediated by Sporosarcina pasteurii.

نویسندگان

  • Swayamdipta Bhaduri
  • Nandini Debnath
  • Sushanta Mitra
  • Yang Liu
  • Aloke Kumar
چکیده

The particular bacterium under investigation here (S. pasteurii) is unique in its ability, under the right conditions, to induce the hydrolysis of urea (ureolysis) in naturally occurring environments through secretion of an enzyme urease. This process of ureolysis, through a chain of chemical reactions, leads to the formation of calcium carbonate precipitates. This is known as Microbiologically Induced Calcite Precipitation (MICP). The proper culture protocols for MICP are detailed here. Finally, visualization experiments under different modes of microscopy were performed to understand various aspects of the precipitation process. Techniques like optical microscopy, Scanning Electron Microscopy (SEM) and X-Ray Photo-electron Spectroscopy (XPS) were employed to chemically characterize the end-product. Further, the ability of these precipitates to clog pores inside a natural porous medium was demonstrated through a qualitative experiment where sponge bars were used to mimic a pore-network with a range of length scales. A sponge bar dipped in the culture medium containing the bacterial cells hardens due to the clogging of its pores resulting from the continuous process of chemical precipitation. This hardened sponge bar exhibits superior strength when compared to a control sponge bar which becomes compressed and squeezed under the action of an applied external load, while the hardened bar is able to support the same weight with little deformation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microbially Induced Calcite Precipitation Employing Environmental Isolates

In this study, five microbes were employed to precipitate calcite in cohesionless soils. Four microbes were selected from calcite-precipitating microbes isolated from calcareous sand and limestone cave soils, with Sporosarcina pasteurii ATCC 11859 (standard strain) used as a control. Urease activities of the four microbes were higher than that of S. pasteurii. The microbes and urea-CaCl₂ medium...

متن کامل

Microbiologically-Induced Soil Stabilization: Application of Sporosarcina pasteurii for Fugitive Dust Control

In this study, we have introduced a biological dust control technique utilizing a naturally occurring soil microorganism, Sporosarcina pasteurii, which is capable of inducing calcium carbonate precipitation in the environment. To evaluate the dust suppressive potential of this microbial calcite, S. pasteurii was suspended in medium and applied to locally available sand. The treated soil samples...

متن کامل

Effects of Calcium Source on Biochemical Properties of Microbial CaCO3 Precipitation

The biochemical properties of CaCO3 precipitation induced by Sporosarcina pasteurii, an ureolytic type microorganism, were investigated. Effects of calcium source on the precipitation process were examined, since calcium source plays a key role in microbiologically induced mineralization. Regardless of the calcium source type, three distinct stages in the precipitation process were identified b...

متن کامل

Urease activity in microbiologically-induced calcite precipitation.

The role of microbial urease in calcite precipitation was studied utilizing a recombinant Escherichia coli HB101 containing a plasmid, pBU11, that encodes Bacillus pasteurii urease. The calcite precipitation by E. coli HB101 (pBU11) was significant although its precipitation level was not as high as that by B. pasteurii. Addition of low concentrations (5-100 microM) of nickel, the cofactor of u...

متن کامل

Microbially induced calcite precipitation-based sequestration of strontium by Sporosarcina pasteurii WJ-2.

Contamination by radioactive strontium ((90)Sr) is a significant environmental problem. Ureolytically driven calcium carbonate precipitation has been proposed for use in geotechnical engineering for soil remediation applications. In this study, 68 ureolytic bacterial strains were newly isolated from various environments. Of these, 19 strains were selected based on ureolytic activity shown when ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of visualized experiments : JoVE

دوره 110  شماره 

صفحات  -

تاریخ انتشار 2016